// graph.cpp : Defines the entry point for the console application.
//
//
For More:> Sorting......, selection sort..., merge sort....., insertion Sort....., General Tree.... and many more......
#include "stdafx.h"
#include<iostream>
#include <list>
using namespace std;
// This class represents a directed graph using adjacency list representation
struct Graph
{
int V; // No. of vertices
list<int> *adj; // Pointer to an array containing adjacency lists
Graph(int V); // Constructor
void addEdge(int v, int w); // function to add an edge to graph
void BFS(int s); // prints BFS traversal from a given source s
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}
void Graph::BFS(int s)
{
// Mark all the vertices as not visited
bool *visited = new bool[V];
for(int i = 0; i < V; i++)
visited[i] = false;
// Create a queue for BFS
list<int> queue;
// Mark the current node as visited and enqueue it
visited[s] = true;
queue.push_back(s);
// "i" will be used to get all adjacent vertices of a vertex
list<int>::iterator i;
while(!queue.empty())
{
// Dequeue a vertex from queue and print it
s = queue.front();
cout << s << " ";
queue.pop_front();
// Get all adjacent vertices of the dequeued vertex s
// If a adjacent has not been visited, then mark it visited
// and enqueue it
for(i = adj[s].begin(); i != adj[s].end(); ++i)
{
if(!visited[*i])
{
visited[*i] = true;
queue.push_back(*i);
}
}
}
}
int main()
{
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
int c;
cout<<"enter values to starting vertex for traversal";
cin>>c;
cout << "Following is Breadth First Traversal (starting from vertex "<<c<<") \n";
g.BFS(c);
return 0;
}
//
//
For More:> Sorting......, selection sort..., merge sort....., insertion Sort....., General Tree.... and many more......
#include "stdafx.h"
#include<iostream>
#include <list>
using namespace std;
// This class represents a directed graph using adjacency list representation
struct Graph
{
int V; // No. of vertices
list<int> *adj; // Pointer to an array containing adjacency lists
Graph(int V); // Constructor
void addEdge(int v, int w); // function to add an edge to graph
void BFS(int s); // prints BFS traversal from a given source s
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}
void Graph::BFS(int s)
{
// Mark all the vertices as not visited
bool *visited = new bool[V];
for(int i = 0; i < V; i++)
visited[i] = false;
// Create a queue for BFS
list<int> queue;
// Mark the current node as visited and enqueue it
visited[s] = true;
queue.push_back(s);
// "i" will be used to get all adjacent vertices of a vertex
list<int>::iterator i;
while(!queue.empty())
{
// Dequeue a vertex from queue and print it
s = queue.front();
cout << s << " ";
queue.pop_front();
// Get all adjacent vertices of the dequeued vertex s
// If a adjacent has not been visited, then mark it visited
// and enqueue it
for(i = adj[s].begin(); i != adj[s].end(); ++i)
{
if(!visited[*i])
{
visited[*i] = true;
queue.push_back(*i);
}
}
}
}
int main()
{
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
int c;
cout<<"enter values to starting vertex for traversal";
cin>>c;
cout << "Following is Breadth First Traversal (starting from vertex "<<c<<") \n";
g.BFS(c);
return 0;
}
Dear Readers if you have any query/question feel free to ask me via comment box given below. Also Follow us on social media site and share that post with your friends. - See more at: http://onlinecomputercafe.blogspot.com
useful tutorial keep it up...
EmoticonEmoticon